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Overview

• Colorado River Basin hydrology ensembles and uncertainty 

• Many Objective Robust Decision Making (MORDM)

• Lake Mead MORDM research project

2



• Ensemble-based planning

Methods used to incorporate hydrologic 
uncertainty

Ensemble Category Types of Ensembles

Resampled Historical 
Streamflow

Full observed Record (Full Hydrology)

Subset of Observed Record:

1988-2017 (Stress Test) 1931-2017 (Early Pluvial Removed)

Paleo Record

GCM-based
CMIP3 ensemble

CMIP5 ensemble (under development)

Blended
Paleo-conditioned

GCM-conditioned (under development)
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• Ensemble-based planning

Methods used to incorporate hydrologic 
uncertainty

Ensemble Category Types of Ensembles

Resampled Historical 
Streamflow

Full observed Record (Full Hydrology)

Subset of Observed Record:

1988-2017 (Stress Test) 1931-2017 (Early Pluvial Removed)

Paleo Record

GCM-based
CMIP3 ensemble

CMIP5 ensemble (under development)

Blended
Paleo-conditioned

GCM-conditioned (under development)

2019 DCP
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All projections are from January 2019 CRSS modeling, which do not include the DCP. 
Full Hydrology uses 111 hydrologic inflow sequences based on resampling of the observed natural flow record from 1906-2016.

Hydrologic ensembles and how they compare
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All projections are from January 2019 CRSS modeling, which do not include the DCP. 
Full Hydrology uses 111 hydrologic inflow sequences based on resampling of the observed natural flow record from 1906-2016.
Early Pluvial Removed Hydrology uses 86 hydrologic inflow sequences based on resampling of the observed natural flow record from 1931-2016. 
Stress Test Hydrology uses 29 hydrologic inflow sequences based on resampling of the observed natural flow record from 1988-2016.
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Shifting Risk
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Motivation for exploring Decision Making under Deep 
Uncertainty (DMDU) techniques

• Deep uncertainty1: when parties do not know or cannot agree on
• the most appropriate system model(s)
• probability distributions of key external conditions
• how to value different measures of system performance

• Decision Making under Deep Uncertainty (DMDU) techniques are designed to 
mitigate the planning challenges posed by deep uncertainty

• Focus on system response and vulnerability
• Goal is to find a robust solution- one that has acceptable performance in a wide range of 

futures

• The DMDU technique Robust Decision Making was used in the 2012 Basin Study 

• Many Objective Robust Decision Making (MORDM) has three important strengths:
1. Efficient way to test thousands of operating policies
2. Quantitative mechanism for expressing conflicting performance priorities
3. Reduces the importance of choosing ensembles of future conditions

1 Lempert, R. J., D. G. Groves, S. W. Popper, and S. C. Bankes. (2006). “A General, Analytic Method for Generating Robust 
Strategies and Narrative Scenarios.” Management Science 52 (4): 514–28
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MORDM framework

Use multiobjective 
optimization to generate 

thousands of policy 
alternatives

Test the 
alternatives in 
many futures

Define 
robustness

Identify robust 
alternatives

Characterize 
vulnerability of 

alternatives

Deliberate based 
on vulnerability 

results and other 
performance

Choose 
alternative(s)
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Searching for a Robust Operation of Lake Mead

Elliot Alexander M.S. Thesis 

https://www.usbr.gov/lc/region/programs/recently-completed-research.html



Generating new operating policies for Lake Mead

MOEA

f1 …    f8

Objectives Functions (𝒇𝒇𝒊𝒊)

Input Hydrology and 
Water Demand Scenario

Policy Variables 

Model Outputs

measurements of
system performance

CRSS Model
MOEA Policy

Mead Tier Elevations &
Shortage Volumes

PE

Rel

Div

2

2 Multi Objective Evolutionary Algorithm



Evaluating performance: 8 objectives

Lower Basin Objectives
Mead 1000 1 Minimize % of time that monthly Lake Mead Pool Elevation is < 1,000'

LB Max Consecutive Shortage Duration 2 Minimize the maximum amount of consecutive years in shortage operation

LB Shortage Frequency 3 Minimize % of time that the system is in an annual shortage operation 

LB Shortage Volume 4 Minimize the cumulative average annual Lower Basin total shortage volume

Max Annual LB Shortage 5 Minimize the maximum annual Lower Basin policy shortage volume 

Upper Basin Objectives
Powell 3490 6 Minimize % of time that monthly Lake Powell Pool Elevation is < 3,490'

Powell WY Release 7 Minimize cumulative average annual Water Year release from Lake Powell

Lee Ferry Deficit 8 Minimize % of time that annual 10 year compact volume falls below 75 maf

* All objectives are minimized, meaning lower values indicate superior performance.



WSA

PA

RSA Pr
ef

er
re

d 
Di

re
ct

io
n

Results: MOEA-generated operating policies

* The MOEA evaluated 7,500 policies and 463 of those policies were considered to be high performing.



Testing the MOEA-generated policies in many futures

3

Simulation Model

• 107 Observed 
traces 

• 112 CMIP3 
traces

• Official 2007 
Demand

• Slow Growth 
• Rapid Growth

463

MOEA-generated
Operating Policies 

(219 Supply Traces) x (3 Demand Scenarios) x (463 Policies) = 
304,191 Simulations

Q107

Water Supply Scenarios (Q)

Water Demand Scenarios

Q112

Observed Flow Ensemble

Future Climate Ensemble

D1

Slow Growth Demand

Rapid Growth Demand
D2

D3

Many Futures

Baseline Demand



New RiverSMART DMI supports policy dimension
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𝑺𝑺𝑺𝑺𝑺𝑺𝒊𝒊𝑺𝑺𝒇𝒇𝒊𝒊𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺 =
1
𝑁𝑁
�
𝑗𝑗=1

𝑁𝑁

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖{𝐹𝐹(𝒙𝒙𝒎𝒎)𝑖𝑖,𝑗𝑗}

𝑁𝑁 = is the total number of states of the world (SOW) within set of J. 
𝒙𝒙𝒎𝒎 = operating policy, m
i = objective counter in set of I objectives considered in performance requirements
𝐹𝐹(𝑥𝑥𝑚𝑚)𝑖𝑖,𝑗𝑗 = the value of the ith objective in SOW j
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖= indicator function that returns 1 if policy xm meets ith objective performance requirement in state of the world j and 𝐼𝐼𝑠𝑠 = 0 otherwise.

Defining robustness

Robustness criteria used in this research:

If a policy:
• keeps Lake Mead above 1,000’ greater than 90% of the time, 
• results in an average annual shortage volume less than or equal to 600 kaf, and 
• keeps Lake Powell above 3,490’ greater than 95% of the time

then it is robust in a given supply and demand future.

If a policy meets these three performance requirements in all futures tested, then that 
policy would have a 100% robustness score

Herman, J. D., Reed, P. M., Zeff, H. B. & Characklis, G. W., 2015. How Should Robustness Be Defined for Water Systems Planning under Change?  
Journal of Water Resources Planning and Management , pp. 1 - 14.



Color = Robustness Score % Robustness Criteria:
Mead 1,000’ > 90%

LB Shortage Volume ≤ 600 kaf

Powell 3,490’ > 95%

Evaluating the robustness of the MOEA-generated 
policies



Evaluating the robustness of the MOEA-generated 
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Ongoing and future work

• Expand MOEA search to include coordinated operations between Lakes Powell and 
Mead

• Quantitative analyses to identify conditions that result in system vulnerability under 
different policies

• Developing structured approach to combine performance, robustness, and 
vulnerability information to aid planning process.

Use multiobjective 
optimization to generate 

thousands of policy 
alternatives

Test the 
alternatives in 
many futures

Define 
robustness

Identify robust 
alternatives

Characterize 
vulnerability of 

alternatives

Deliberate based 
on vulnerability 

results and other 
performance

Choose 
alternative(s)



Conclusions

•Choosing an ensemble to represent future hydrology has a 
significant impact on planning studies and the uncertainty is not 
reducible.

•MORDM offers a promising way to de-emphasize ensemble choice 
while efficiently identifying new policies and quantitatively 
incorporating different performance priorities.

•Recent RiverWare developments have been critical to Reclamation’s 
exploration of MORDM and future work with CADSWES will 
continue to enhance these new capabilities.
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